Features Extraction For Protein Homology Detection Using Hidden Markov Models Combining Scores
نویسندگان
چکیده
Few years back, Jaakkola and Haussler published a method of combining generative and discriminative approaches for detecting protein homologies. The method was a variant of support vector machines using a new kernel function called Fisher Kernel. They begin by training a generative hidden Markov model for a protein family. Then, using the model, they derive a vector of features called Fisher scores that are assigned to the sequence and then use support vector machine in conjunction with the fisher scores for protein homologies detection. In this paper, we revisit the idea of using a discriminative approach, and in particular support vector machines for protein homologies detection. However, in place of the Fisher scoring method, we present a new Hidden Markov Model Combining Scores approach. Six scoring algorithms are combined as a way of extracting features from a protein sequence. Experiments show that our method, improves on previous methods for homologies detection of protein domains.
منابع مشابه
Combining Three Scoring Algorithms for Representing Protein Sequence
Effective representation of the protein sequence is a key issue in detecting remote protein homology. Recent work using string kernels for protein data has achieved state-of-the-art performance for protein classification. However, such representations are suffering from high dimensionality problem. In this work, we introduce a simple method based on representing the protein sequence by fix dime...
متن کاملAutomated Detection of Multiple Sclerosis Lesions Using Texture-based Features and a Hybrid Classifier
Background: Multiple Sclerosis (MS) is the most frequent non-traumatic neurological disease capable of causing disability in young adults. Detection of MS lesions with magnetic resonance imaging (MRI) is the most common technique. However, manual interpretation of vast amounts of data is often tedious and error-prone. Furthermore, changes in lesions are often subtle and extremely unrepresentati...
متن کاملHomology Detection via Family Pairwise Search
The function of an unknown biological sequence can often be accurately inferred by identifying sequences homologous to the original sequence. Given a query set of known homologs, there exist at least three general classes of techniques for finding additional homologs: pairwise sequence comparisons, motif analysis, and hidden Markov modeling. Pairwise sequence comparisons are typically employed ...
متن کاملFamily pairwise search with embedded motif models
MOTIVATION Statistical models of protein families, such as position-specific scoring matrices, profiles and hidden Markov models, have been used effectively to find remote homologs when given a set of known protein family members. Unfortunately, training these models typically requires a relatively large set of training sequences. Recent work (Grundy, J. Comput. Biol., 5,<479-492, 1998) has sho...
متن کاملIntroducing Busy Customer Portfolio Using Hidden Markov Model
Due to the effective role of Markov models in customer relationship management (CRM), there is a lack of comprehensive literature review which contains all related literatures. In this paper the focus is on academic databases to find all the articles that had been published in 2011 and earlier. One hundred articles were identified and reviewed to find direct relevance for applying Markov models...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- International Journal of Computational Intelligence and Applications
دوره 4 شماره
صفحات -
تاریخ انتشار 2004